Senin, 01 April 2013

diktat limbah chapter 4


Chapter 4 : Pengelolaan limbah gas
TINJAUAN MATA KULIAH
1.       Bab ini berisi tentang definisi pencemaran udara, polutan dan dampaknya serta upaya pengendalian pencemaran udara.
2.       Manfaat dan tujuan pembelajaran bab ini adalah mahasiswa dapat mengetahui dan memahami tentang pencemaran udara dan upaya pengendaliannya

1.1   DEFINISI PENCEMARAN UDARA
Perwujudan kualitas lingkungan yang sehat merupakan bagian pokok di bidang kesehatan. Udara sebagai komponen lingkungan yang penting dalam kehidupan perlu dipelihara dan ditingkatkan kualitasnya sehingga dapat memberikan daya dukungan bagi mahluk hidup untuk hidup secara optimal. Pencemaran udara dewasa ini semakin menampakkan kondisi yang sangat memprihatinkan. Sumber pencemaran udara dapat berasal dari berbagai kegiatan antara lain industri, transportasi, perkantoran, dan perumahan. Berbagai kegiatan tersebut merupakan kontribusi terbesar dari pencemar udara yang dibuang ke udara bebas. Sumber pencemaran udara juga dapat disebabkan oleh berbagai kegiatan alam, seperti kebakaran hutan, gunung meletus, gas alam beracun, dll. Dampak dari pencemaran udara tersebut adalah menyebabkan penurunan kualitas udara, yang berdampak negatif terhadap kesehatan manusia.
Industri selalu dikaitkan sebagai sumber pencemar karena aktivitas industri merupakan kegiatan yang sangat tampak dalam pembebasan berbagai senyawa kimia ke lingkungan. Sebagian jenis gas dapat dipandang sebagai pencemar udara terutama apabila konsentrasi gas tersebut melebihi tingkat konsentrasi normal dan dapat berasal dari sumber alami (seperti gunung api) serta juga gas yang berasal dari kegiatan manusia (anthropogenic sources). Senyawa pencemar udara itu sendiri digolongkan menjadi dua, yaitu : (a) senyawa pencemar primer, dan (b) senyawa pencemar sekunder. Senyawa pencemar primer adalah senyawa pencemar yang langsung dibebaskan dari sumber sedangkan senyawa pencemar sekunder ialah senyawa pencemar yang baru terbentuk akibat antar-aksi dua atau lebih senyawa primer selama berada di atmosfer. Dari sekian banyak senyawa pencemar yang ada, lima senyawa yang paling sering dikaitkan dengan pencemaran udara ialah: karbonmonoksida (CO), oksida nitrogen (NOx), oksida sulfur (SOx), hidrokarbon (HC), dan partikulat (debu).
Definisi dari pencemaran udara itu sendiri ialah peristiwa pemasukan dan/atau penambahan senyawa, bahan, atau energi ke dalam lingkungan udara akibar kegiatan alam dan manusia sehingga temperatur dan karakteristik udara tidak sesuai lagi untuk tujuan pemanfaatan yang paling baik. Atau dengan singkat dapat dikatakan bahwa nilai lingkungan udara tersebut telah menurun. Pencemaran udara yang disebabkan oleh aktivitas manusia dapat ditimbulkan dari 6 (enam) sumber utama, yaitu :
1. pengangkutan dan transportasi
2. kegiatan rumah tangga
3. pembangkitan daya yang menggunakan bahan bakar fosil
4. pembakaran sampah
5. pembakaran sisa pertanian dan kebakaran hutan
6. pembakaran bahan bakar dan emisi proses

1.2   PARAMETER PENCEMAR UDARA
1. SULFUR DIOKSIDA
A. SIFAT FISIKA DAN KIMIA
Pencemaran oleh sulfur oksida terutama disebabkan oleh dua komponen sulfur bentuk gas yang tidak berwarna, yaitu sulfur dioksida (SO2) dan Sulfur trioksida (SO3), dan keduanya disebut sulfur oksida (SOx). Sulfur dioksida mempunyai karakteristik bau yang tajam dan tidak mudah terbakar diudara, sedangkan sulfur trioksida merupakan komponen yang tidak reaktif. Pembakaran bahan-bahan yang mengandung Sulfur akan menghasilkan kedua bentuk sulfur oksida, tetapi jumlah relative masing-masing tidak dipengaruhi oleh jumlah oksigen yang tersedia. Di udara SO2 selalu terbentuk dalam jumlah besar. Jumlah SO3 yang terbentuk bervariasi dari 1 sampai 10% dari total SOx.
Mekanisme pembentukan SOx dapat dituliskan dalam dua tahap reaksi sebagai berikut :
S + O2 < --------- > SO2
2 SO2 + O2 < --------- > 2 SO3
SO3 di udara dalam bentuk gas hanya mungkin ada jika konsentrasi uap air sangat rendah. Jika konsentrasi uap air sangat rendah. Jika uap air terdapat dalam jumlah cukup, SO3 dan uap air akan segera bergabung membentuk droplet asam sulfat ( H2SO4 ) dengan reaksi sebagai berikut :
SO SO2 + H2O2 ------------ > H2SO4
Komponen yang normal terdapat di udara bukan SO3 melainkan H2SO4 Tetapi jumlah H2SO4 di atmosfir lebih banyak dari pada yang dihasilkan dari emisi SO3 hal ini menunjukkan bahwa produksi H2SO4 juga berasal dari mekanisme lainnya. Setelah berada diatmosfir sebagai SO2 akan diubah menjadi SO3 (Kemudian menjadi H2SO4) oleh proses-proses fotolitik dan katalitik Jumlah SO2 yang teroksidasi menjadi SO3 dipengaruhi oleh beberapa faktor termasuk jumlah air yang tersedia, intensitas, waktu dan distribusi spektrum sinar matahari, Jumlah bahan katalik, bahan sorptif dan alkalin yang tersedia. Pada malam hari atau kondisi lembab atau selama hujan SO2 di udara diaborpsi oleh droplet air alkalin dan bereaksi pada kecepatan tertentu untuk membentuk sulfat di dalam droplet.

B. SUMBER DAN DISTRIBUSI
Sepertiga dari jumlah sulfur yang terdapat di atmosfir merupakan hasil kegiatan manusia dan kebanyakan dalam bentuk SO2. Dua pertiga hasil kegiatan manusia dan kebanyakan dalam bentuk SO2. Dua pertiga bagian lagi berasal dari sumber-sumber alam seperti vulkano dan terdapat dalam bentuk H2S dan oksida. Masalah yang ditimbulkan oleh bahan pencemar yang dibuat oleh manusia adalah ditimbulkan oleh bahan pencemar yang dibuat oleh manusia adalah dalam hal distribusinya yang tidak merata sehingga terkonsentrasi pada daerah tertentu. Sedangkan pencemaran yang berasal dari sumber alam biasanya lebih tersebar merata. Tetapi pembakaran bahan bakar pada sumbernya merupakan sumber pencemaran SOx, misalnya pembakaran arang, minyak bakar gas, kayu dan sebagainya Sumber SOx yang kedua adalah dari proses-proses industri seperti pemurnian petroleum, industri asam sulfat, industri peleburan baja dan sebagainya.
Pabrik peleburan baja merupakan industri terbesar yang menghasilkan SOx. Hal ini disebabkan adanya elemen penting alami dalam bentuk garam sulfida misalnya tembaga ( CuFeS2 dan Cu2S ), zink (ZnS), Merkuri (HgS) dan Timbal (PbS). Kerbanyakan senyawa logam sulfida dipekatkan dan dipanggang di udara untuk mengubah sulfida menjadi oksida yang mudah tereduksi. Selain itu sulfur merupakan kontaminan yang tidak dikehandaki didalam logam dan biasanya lebih mudah untuk menghasilkan sulfur dari logam kasar dari pada menghasilkannya dari produk logam akhirnya. Oleh karena itu SO2 secara rutin diproduksi sebagai produk samping dalam industri logam dan sebagian akan terdapat di udara.
C. DAMPAK TERHADAP KESEHATAN
Pencemaran SOx menimbulkan dampak terhadap manusia dan hewan, kerusakan pada tanaman terjadi pada kadasr sebesar 0,5 ppm. Pengaruh utama polutan SOx terhadap manusia adalah iritasi sistim pernafasan. Beberapa penelitian menunjukkan bahwa iritasi tenggorokan terjadi pada kadar SO2 sebesar 5 ppm atau lebih bahkan pada beberapa individu yang sensitif iritasi terjadi pada kadar 1-2 ppm. SO2 dianggap pencemar yang berbahaya bagi kesehatan terutama terhadap orang tua dan penderita yang mengalami penyakit khronis pada sistem pernafasan kadiovaskular. Individu dengan gejala penyakit tersebut sangat sensitif terhadap kontak dengan SO2, meskipun dengan kadar yang relative rendah. Kadar SO2 yang berpengaruh terhadap gangguan kesehatan adalah sebagai berikut yang ditampilkan oleh Tabel 6 :
Tabel 6. Pengaruh Pencemaran SOx terhadap Kesehatan

2. CARBON MONOKSIDA
A. SIFAT FISIKA DAN KIMIA
Karbon dan Oksigen dapat bergabung membentuk senjawa karbon monoksida (CO) sebagai hasil pembakaran yang tidak sempurna dan karbon dioksida (CO2) sebagai hasil pembakaran sempurna. Karbon monoksida merupakan senyawa yang tidak berbau, tidak berasa dan pada suhu udara normal berbentuk gas yang tidak berwarna. Tidak seperti senyawa CO mempunyai potensi bersifat racun yang berbahaya karena mampu membentuk ikatan yang kuat dengan pigmen darah yaitu haemoglobin.

B. SUMBER DAN DISTRIBUSI
Karbon monoksida di lingkungan dapat terbentuk secara alamiah, tetapi sumber utamanya adalah dari kegiatan manusia, Korban monoksida yang berasal dari alam termasuk dari lautan, oksidasi metal di atmosfir, pegunungan, kebakaran hutan dan badai listrik alam. Sumber CO buatan antara lain kendaraan bermotor, terutama yang menggunakan bahan bakar bensin. Berdasarkan estimasi, Jumlah CO dari sumber buatan diperkirakan mendekati 60 juta Ton per tahun. Separuh dari jumlah ini berasal dari kendaraan bermotor yang menggunakan bakan bakar bensin dan sepertiganya berasal dari sumber tidak bergerak seperti pembakaran batubara dan minyak dari industri dan pembakaran sampah domestik. Didalam laporan WHO (1992) dinyatakan paling tidak 90% dari CO diudara perkotaan berasal dari emisi kendaraan bermotor. Selain itu asap rokok juga mengandung CO, sehingga para perokok dapat memajan dirinya sendiri dari asap rokok yang sedang dihisapnya.
Sumber CO dari dalam ruang (indoor) termasuk dari tungku dapur rumah tangga dan tungku pemanas ruang. Dalam beberapa penelitian ditemukan kadar CO yang cukup tinggi didalam kendaraan sedan maupun bus. Kadar CO diperkotaan cukup bervariasi tergantung dari kepadatan kendaraan bermotor yang menggunakan bahan bakar bensin dan umumnya ditemukan kadar maksimum CO yang bersamaan dengan jam-jam sibuk pada pagi dan malam hari. Selain cuaca, variasi dari kadar CO juga dipengaruhi oleh topografi jalan dan bangunan disekitarnya. Pemajanan CO dari udara ambien dapat direfleksikan dalam bentuk kadar karboksi-haemoglobin (HbCO) dalam darah yang terbentuk dengan sangat pelahan karena butuh waktu 4-12 jam untuk tercapainya keseimbangan antara kadar CO diudara dan HbCO dalam darah Oleh karena itu kadar CO didalam lingkungan, cenderung dinyatakan sebagai kadar rata-rata dalam 8 jam pemajanan Data CO yang dinyatakan dalam rata-rata setiap 8 jam pengukuran sepajang hari (moving 8 hour average concentration) adalah lebih baik dibandingkan dari data CO yang dinyatakan dalam rata-rata dari 3 kali pengukuran pada periode waktu 8 jam yang berbeda dalam sehari. Perhitungan tersebut akan lebih mendekati gambaran dari respons tubuh manusia tyerhadap keracunan CO dari udara.
Karbon monoksida yang bersumber dari dalam ruang (indoor) terutama berasal dari alat pemanas ruang yang menggunakan bahan bakar fosil dan tungku masak. Kadar nya akan lebih tinggi bila ruangan tempat alat tersebut bekerja, tidak memadai ventilasinya. Namun umunnya pemajanan yang berasal dari dalam ruangan kadarnya lebih kecil dibandingkan dari kadar CO hasil pemajanan asap rokok. Beberapa Individu juga dapat terpajan oleh CO karena lingkungan kerjanya. Kelompok masyarakat yang paling terpajan oleh CO termasuk polisi lalu lintas atau tukang pakir, pekerja bengkel mobil, petugas industri logam, industri bahan bakar bensin, industri gas kimia dan pemadam kebakaran.
Pemajanan CO dari lingkungan kerja seperti yang tersebut diatas perlu mendapat perhatian. Misalnya kadar CO di bengkel kendaraan bermotor ditemukan mencapai setinggi 600 mg/m3 dan didalam darah para pekerja bengkel tersebut bias mengandung HbCO sampai lima kali lebih tinggi dari kadar nomal. Para petugas yang bekerja dijalan raya diketahui mengandung HbCO dengan kadar 4–7,6% (porokok) dan 1,4–3,8% (bukan perokok) selama sehari bekarja. Sebaliknya kadar HbCO pada masyarakat umum jarang yang melampaui 1% walaupun studi yang dilakukan di 18 kota besar di Amerika Utara menunjukan bahwa 45 % dari masyarakat bukan perokok yang terpajan oleh CO udara, di dalam darahnya terkandung HbCO melampaui 1,5%. Perlu juga diketahui bahwa manusia sendiri dapat memproduksi CO akibat proses metabolismenya yang normal. Produksi CO didalam tubuh sendiri ini (endogenous) bisa sekitar 0,1+1% dari total HbCO dalam darah.

C. DAMPAK TERHADAP KESEHATAN
Karakteristik biologik yang paling penting dari CO adalah kemampuannya untuk berikatan dengan haemoglobin, pigmen sel darah merah yang mengakut oksigen keseluruh tubuh. Sifat ini menghasilkan pembentukan karboksihaemoglobin (HbCO) yang 200 kali lebih stabil dibandingkan oksihaemoglobin (HbO2). Penguraian HbCO yang relatif lambat menyebabkan terhambatnya kerja molekul sel pigmen tersebut dalam fungsinya membawa oksigen keseluruh tubuh. Kondisi seperti ini bisa berakibat serius, bahkan fatal, karena dapat menyebabkan keracunan. Selain itu, metabolisme otot dan fungsi enzim intra-seluler juga dapat terganggu dengan adanya ikatan CO yang stabil tersebut. Dampat keracunan CO sangat berbahaya bagi orang yang telah menderita gangguan pada otot jantung atau sirkulasi darah periferal yang parah.
Dampak dari CO bervasiasi tergangtung dari status kesehatan seseorang pada saat terpajan .Pada beberapa orang yang berbadan gemuk dapat mentolerir pajanan CO sampai kadar HbCO dalam darahnya mencapai 40% dalam waktu singkat. Tetapi seseorang yang menderita sakit jantung atau paru-paru akan menjadi lebih parah apabila kadar HbCO dalam darahnya sebesar 5–10%. Pengaruh CO kadar tinggi terhadap sistem syaraf pusat dan sistem kardiovaskular telah banyak diketahui. Namun respon dari masyarakat berbadan sehat terhadap pemajanan CO kadar rendah dan dalam jangka waktu panjang, masih sedikit diketahui. Misalnya kinerja para petugas jaga, yang harus mempunyai kemampuan untuk mendeteksi adanya perubahan kecil dalam lingkungannya yang terjadi pada saat yang tidak dapat diperkirakan sebelumnya dan membutuhkan kewaspadaan tinggi dan terus menerus, dapat terganggu/ terhambat pada kadar HbCO yang berada dibawah 10% dan bahkan sampai 5% (hal ini secara kasar ekivalen dengan kadar CO di udara masing-masing sebesar 80 dan 35 mg/m3) Pengaruh ini terlalu terlihat pada perokok, karena kemungkinan sudah terbiasa terpajan dengan kadar yang sama dari asap rokok.
Beberapa studi yang dilakukan terhadap sejumlah sukarelawan berbadan sehat yang melakukan latihan berat (studi untuk melihat penyerapan oksigen maksimal) menunjukkan bahwa kesadaran hilang pada kadar HbCO 50% dengan latihan yang lebih ringan, kesadaran hilang pada HbCo 70% selama 5-60 menit. Gangguan tidak dirasakan pada HbCO 33%, tetapi denyut jantung meningkat cepat dan tidak proporsional. Studi dalam jangka waktu yang lebih panjang terhadap pekerja yang bekerja selama 4 jam dengan kadar HbCO 5-6% menunjukkan pengaruh yang serupa terhadap denyut jantung, tetapi agak berbeda.
Hasil studi diatas menunjukkan bahwa paling sedikit untuk para bukan perokok, ternyata ada hubungan yang linier antara HbCO dan menurunnya kapasitas maksimum oksigen. Walaupun kadar CO yang tinggi dapat menyebabkan perubahan tekanan darah, meningkatkan denyut jantung, ritme jantung menjadi abnormal gagal jantung, dan kerusakan pembuluh darah periferal, tidak banyak didapatkan data tentang pengaruh pemajanan CO kadar rendah terhadap sistim kardiovaskular. Hubungan yang telah diketahui tentang merokok dan peningkatan risiko penyakit jantung koroner menunjukkan bahwa CO kemungkinan mempunyai peran dalam memicu timbulnya penyakit tersebut (perokok berat tidak jarang mengandung kadar HbCO sampai 15 %). Namun tidak cukup bukti yang menyatakan bahwa karbon monoksida menyebabkan penyakit jantung atau paru-paru, tetapi jelas bahwa CO mampu untuk mengganggu transpor oksigen ke seluruh tubuh yang dapat berakibat serius pada seseorang yang telah menderita sakit jantung atau paru-paru.
Studi epidemiologi tentang kesakitan dan kematian akibat penyakit jantung dan kadar CO di udara yang dibagi berdasarkan wilayah, sangat sulit untuk ditafsirkan. Namun dada terasa sakit pada saat melakukan gerakan fisik, terlihat jelas akan timbul pada pasien yang terpajan CO dengan kadar 60 mg/m3, yang menghasilkan kadar HbCO mendekati 5%. Walaupun wanita hamil dan janin yang dikandungnya akan menghasilkan CO dari dalam tubuh (endogenous) dengan kadar yang lebih tinggi, pajanan tambahan dari luar dapat mengurangi fungsi oksigenasi jaringan dan plasental, yang menyebabkan bayi dengan berat badan rendah. Kondisi seperti ini menjelaskan mengapa wanita merokok melahirkan bayi dengan berat badan lebih rendah dari normal. Masih ada dua aspek lain dari pengaruh CO terhadap kesehatan yang perlu dicatat. Pertama, tampaknya binatang percobaan dapat beradaptasi terhadap pemajanan CO karena mampu mentolerir dengan mudah pemajanan akut pada kadar tinggi, walaupun masih memerlukan penjelasan lebih lanjut. Kedua, dalam kaitannya dengan CO di lingkungan kerja yang dapat menggangggu pertubuhan janin pada pekerja wanita, adalah kenyataan bahwa paling sedikit satu jenis senyawa hidrokarbon-halogen yaitu metilen khlorida (dikhlorometan), dapat menyebabkan meningkatnya kadar HbCO karena ada metobolisme di dalam tubuh setelah absorpsi terjadi.
Karena senyawa diatas termasuk kelompok pelarut (Sollvent) yang banyak digunakan dalam industri untuk menggantikan karbon tetrakhlorida yang beracun, maka keamanan lingkungan kerja mereka perlu ditinjau lebih lanjut.



3. NITROGEN DIOKSIDA
A. SIFAT FISIKA DAN KIMIA
Oksida Nitrogen (NOx) adalah kelompok gas nitrogen yang terdapat di atmosfir yang terdiri dari nitrogen monoksida (NO) dan nitrogen dioksida (NO2). Walaupun ada bentuk oksida nitrogen lainnya,  tetapi kedua gas tersebut yang paling banyak diketahui sebagai bahan pencemar udara. Nitrogen  monoksida merupakan gas yang tidak berwarna dan tidak berbau sebaliknya nitrogendioksida berwarna coklat kemerahan dan berbau tajam.
Nitrogen monoksida terdapat diudara dalam jumlah lebih besar daripada NO2. Pembentukan NO dan NO2 merupakan reaksi antara nitrogen dan oksigen diudara sehingga membentuk NO, yang bereaksi lebih lanjut dengan lebih banyak oksigen membentuk NO2. Udara terdiri dari 80% Volume nitrogen dan 20% Volume oksigen. Pada suhu kamar, hanya sedikit kecendrungan nitrogen dan oksigen untuk bereaksi satu sama lainnya. Pada suhu yang lebih tinggi (diatas 1210°C) keduanya dapat bereaksi membentuk NO dalam jumlah banyak sehingga mengakibatkan pencemaran udara. Dalam proses pembakaran, suhu yang digunakan biasanya mencapai 1210 – 1.765 °C, oleh karena itu reaksi ini merupakan sumber NO yang penting. Jadi reaksi pembentukan NO merupakan hasil samping dari proses pembakaran.

B. SUMBER DAN DISTRIBUSI
Dari seluruh jumlah oksigen nitrogen ( NOx ) yang dibebaskan ke udara, jumlah yang terbanyak adalah dalam bentuk NO yang diproduksi oleh aktivitas bakteri. Akan tetapi pencemaran NO dari sumber alami ini tidak merupakan masalah karena tersebar secara merata sehingga jumlah nya menjadi kecil. Yang menjadi masalah adalah pencemaran NO yang diproduksi oleh kegiatan manusia karena jumlahnya akan meningkat pada tempat-tempat tertentu.
Kadar NOx diudara perkotaan biasanya 10–100 kali lebih tinggi dari pada di udara pedesaan. Kadar NOx diudara daerah perkotaan dapat mencapai 0,5 ppm (500 ppb). Seperti halnya CO, emisi NOx dipengaruhi oleh kepadatan penduduk karena sumber utama NOx yang diproduksi manusia adalah dari pembakaran dan kebanyakan pembakaran disebabkan oleh kendaraan bermotor, produksi energi dan pembuangan sampah. Sebagian besar emisi NOx buatan manusia berasal dari pembakaran arang, minyak, gas, dan bensin. Kadar NOx di udara dalam suatu kota bervariasi sepanjang hari tergantung dari intensitas sinar mataharia dan aktivitas kendaraan bermotor. Perubahan kadar NOx berlangsung sebagai berikut :
a)       Sebelum matahari terbit, kadar NO dan NO2 tetap stabil dengan kadar sedikit lebih tinggi dari kadar minimum seharihari.
b)       Setelah aktifitas manusia meningkat ( jam 6-8 pagi ) kadar NO meningkat terutama karena meningkatnya aktivitas lalulintas yaitu kendaraan bermotor. Kadar NO tetinggi pada saat ini dapat mencapai 1-2 ppm.
c)       Dengan terbitnya sinar matahari yang memancarkan sinar ultra violet kadar NO2 (sekunder) kadar NO2 pada saat ini dapat mencapai 0,5 ppm.
d)       Kadar ozon meningkat dengan menurunnya kadar NO sampai 0,1 ppm.
e)       Jika intensitas sinar matahari menurun pada sore hari ( jam 5-8 malam ) kadar NO meningkat kembali.
f)        Energi matahari tidak mengubah NO menjadi NO2 (melalui reaksi hidrokarbon) tetapi O3 yang terkumpul sepanjang hari akan bereaksi dengan NO. Akibatnya terjadi kenaikan kadar NO2 dan penurunan kadar O3.
g)       Produk akhir dari pencemaran NOx di udara dapat berupa asam nitrat, yang kemudian diendapkan sebagai garam garam nitrat didalam air hujan atau debu. Merkanisme utama pembentukan asam nitrat dari NO2 di udara masih terus dipelajari Salah satu reaksi dibawah ini diduga juga terjadi diudara tetapi diudara tetapi peranannya mungkin sangat kecil dalam menentukan jumlah asam nitrat di udara.
h)       Kemungkinan lain pembentukan HNO3 didalam udara tercemar adalah adanya reaksi dengan ozon pada kadar NO2 maksimum O3 memegang peranan penting dan kemungkinan terjadi tahapan reaksi sebagai berikut :
O3 + NO2 à NO3 + O2
NO3 + NO2  à N2O5
N2O5 + 2HNO3 à 2HNO3
Reaksi tersebut diatas masih terus dibuktikan kebenarannya, tetapi yang penting adalah bahwa proses-proses diudara mengakibatkan perubahan NOx menjadi HNO3 yang kemudian bereaksi membentuk partikel-partikel.

C. DAMPAK TERHADAP KESEHATAN
Oksida nitrogen seperti NO dan NO2 berbahaya bagi manusia. Penelitian menunjukkan bahwa NO2 empat kali lebih beracun daripada NO. Selama ini belum pernah dilaporkan terjadinya keracunan NO yang mengakibatkan kematian. Diudara ambient yang normal, NO dapat mengalami oksidasi menjadi NO2 yang bersifat racun. Penelitian terhadap hewan percobaan yang dipajankan NO dengan dosis yang sangat tinggi, memperlihatkan gejala kelumpuhan sistim syarat dan kekejangan. Penelitian lain menunjukkan bahwa tikus yang dipajan NO sampai 2500 ppm akan hilang kesadarannya setelah 6-7 menit, tetapi jika kemudian diberi udara segar akan sembuh kembali setelah 4–6 menit. Tetapi jika pemajanan NO pada kadar tersebut berlangsung selama 12 menit, pengaruhnya tidak dapat dihilangkan kembali, dan semua tikus yang diuji akan mati.
NO2 bersifat racun terutama terhadap paru. Kadar NO2 yang lebih tinggi dari 100 ppm dapat mematikan sebagian besar binatang percobaan dan 90% dari kematian tersebut disebabkan oleh gejala pembengkakan paru ( edema pulmonari ). Kadar NO2 sebesar 800 ppm akan mengakibatkan 100% kematian pada binatang-binatang yang diuji dalam waktu 29 menit atau kurang. Pemajanan NO2 dengan kadar 5 ppm selama 10 menit terhadap manusia mengakibatkan kesulitan dalam bernafas.

4. HIDROKARBON
A. SIFAT / KARASTERISTIK
Struktur Hidrokarban (HC) terdiri dari elemen hidrogen dan korbon dan sifat fisik HC dipengaruhi oleh jumlah atom karbon yang menyusun molekul HC. HC adalah bahan pencemar udara yang dapat berbentuk gas, cairan maupun padatan. Semakin tinggi jumlah atom karbon, unsur ini akan cenderung berbentuk padatan. Hidrokarbon dengan kandungan unsur C antara 1-4 atom karbon akan berbentuk gas pada suhu kamar, sedangkan kandungan karbon diatas 5 akan berbentuk cairan dan padatan. HC yang berupa gas akan tercampur dengan gas-gas hasil buangan lainnya. Sedangkan bila berupa cair maka HC akan membentuk semacam kabut minyak, bila berbentuk padatan akan membentuk asap yang pekat dan akhirnya menggumpal menjadi debu.
Berdasarkan struktur molekulnya, hidrokarbon dapat dibedakan dalam 3 kelompok yaitu hidrokarban alifalik, hidrokarbon aromatik dan hidrokarbon alisiklis. Molekul hidrokarbon alifalik tidak mengandung cincin atom karbon dan semua atom karbon tersusun dalam bentuk rantai lurus atau bercabang.

B. SUMBER DAN DISTRIBUSI
Sebagai bahan pencemar udara, Hidrokarbon dapat berasal dari proses industri yang diemisikan ke udara dan kemudian merupakan sumber fotokimia dari ozon. HC merupakan polutan primer karena dilepas ke udara ambien secara langsung, sedangkan oksidan fotokima merupakan polutan sekunder yang dihasilkan di atmosfir dari hasil reaksi-reaksi yang melibatkan polutan primer. Kegiatan industri yang berpotensi menimbulkan cemaran dalam bentuk HC adalah industri plastik, resin, pigmen, zat warna, pestisida dan pemrosesan karet. Diperkirakan emisi industri sebesar 10 % berupa HC.
Sumber HC dapat pula berasal dari sarana transportasi. Kondisi mesin yang kurang baik akan menghasilkan HC. Pada umumnya pada pagi hari kadar HC di udara tinggi, namun pada siang hari menurun. Sore hari kadar HC akan meningkat dan kemudian menurun lagi pada malam hari. Adanya hidrokarbon di udara terutama metana, dapat berasal dari sumber-sumber alami terutama proses biologi aktivitas geothermal seperti explorasi dan pemanfaatan gas alam dan minyak bumi dan sebagainya Jumlah yang cukup besar juga berasal dari proses dekomposisi bahan organik pada permukaan tanah, Demikian juga pembuangan sampah, kebakaran hutan dan kegiatan manusia lainnya mempunyai peranan yang cukup besar dalam memproduksi gas hidrakarbon di atmosfir.

C. DAMPAK KESEHATAN
Hidrokarbon diudara akan bereaksi dengan bahan-bahan lain dan akan membentuk ikatan baru yang disebut polycyclic aromatic hidrocarbon (PAH) yang banyak dijumpai di daerah industri dan padat lalulintas. Bila PAH ini masuk dalam paru-paru akan menimbulkan luka dan merangsang terbentuknya sel-sel kanker. Pengaruh hidrokarbon aromatic pada kesehatan manusia dapat terlihat pada Tabel 7 dibawah ini.


Tabel 7. Pengaruh hidrokarbon aromatic pada kesehatan manusia

5. KHLORIN
A. SIFAT FISIKA DAN KIMIA
Senyawa khlorine yang mengandung khlor yang dapat mereduksi atau mengkonversi zat inert atau zat kurang aktif dalam air, yang termasuk senyawa khlorin adalah asam hipokhlorit (HOCl) dan garam hipokhlorit (OCl). Gas Khlorin ( Cl2) adalah gas berwarna hijau dengan bau sangat menyengat. Berat jenis gas khlorin 2,47 kali berat udara dan 20 kali berat gas hidrogen khlorida yang toksik. Gas khlorin sangat terkenal sebagai gas beracun yang digunakan pada perang dunia ke-1.

B. SUMER DAN DISTRIBUSI
Khlorin merupakan bahan kimia penting dalam industri yang digunakan untuk khlorinasi pada proses produksi yang menghasilkan produk organik sintetik, seperti plastik (khususnya polivinil khlorida), insektisida (DDT, Lindan, dan aldrin) dan herbisida (2,4 dikhloropenoksi asetat) selain itu [juga digunakan sebagai pemutih (bleaching agent) dalam pemrosesan sellulosa, industri kertas, pabrik pencucian (tekstill) dan desinfektan untuk air minum dan kolam renang.
Terbentuknya gas khlorin di udara ambien merupakan efek samping dari proses pemutihan (bleaching) dan produksi zat/ senyawa organik yang mengandung khlor. Karena banyaknya penggunaan senyawa khlor di lapangan atau dalam industri dalam dosis berlebihan seringkali terjadi pelepasan gas khlorin akibat penggunaan yang kurang efektif. Hal ini dapat menyebabkan terdapatnya gas pencemar khlorin dalam kadar tinggi di udara ambien.

C. DAMPAK TERHADAP KESEHATAN
Selain bau yang menyengat gas khlorin dapat menyebabkan iritasi pada mata saluran pernafasan. Apabila gas khlorin masuk dalam jaringan paru-paru dan bereaksi dengan ion hidrogen akan dapat membentuk asam khlorida yang bersifat sangat korosif dan menyebabkan iritasi dan peradangan. diudara ambien, gas khlorin dapat mengalami proses oksidasi dan membebaskan oksigen seperti terlihat dalam reaksi dibawah ini :
CL2 + H2O  à  HCl + HOCl
8 HOCl  à  6 HCl + 2HClO3 + O3
Dengan adanya sinar matahari atau sinar terang maka HOCl yang terbentuk akan terdekomposisi menjadi asam khlorida dan oksigen. Selain itu gas khlorin juga dapat mencemari atmosfer. Pada kadar antara 3,0 – 6,0 ppm gas khlorin terasa pedas dan memerahkan mata. Dan bila terpapar dengan kadar sebesar 14,0 – 21,0 ppm selama 30 –60 menit dapat menyebabkan penyakit paru-paru ( pulmonari oedema ) dan bisa menyebabkan emphysema dan radang paru-paru.

6. PARTIKEL DEBU
A. SIFAT FISIKA DAN KIMIA
Partikulat debu melayang (Suspended Particulate Matter/SPM) merupakan campuran yang sangat rumit dari berbagai senyawa organik dan anorganik yang terbesar di udara dengan diameter yang sangat kecil, mulai dari < 1 mikron sampai dengan maksimal 500 mikron. Partikulat debu tersebut akan berada di udara dalam waktu yang relatif lama dalam keadaan melayang-layang di udara dan masuk kedalam tubuh manusia melalui saluran pernafasan. Selain dapat berpengaruh negatif terhadap kesehatan, partikel debu juga dapat mengganggu daya tembus pandang mata dan juga mengadakan berbagai reaksi kimia di udara. Partikel debu SPM pada umumnya mengandung berbagai senyawa kimia yang berbeda, dengan berbagai ukuran dan bentuk yang berbada pula, tergantung dari mana sumber emisinya.
Karena Komposisi partikulat debu udara yang rumit, dan pentingnya ukuran partikulat dalam menentukan pajanan, banyak istilah yang digunakan untuk menyatakan partikulat debu di udara. Beberapa istilah digunakan dengan mengacu pada metode pengambilan sampel udara seperti : Suspended Particulate Matter (SPM), Total Suspended Particulate (TSP), balack smake. Istilah lainnya lagi lebih mengacu pada tempat di saluran pernafasan dimana partikulat debu dapat mengedap, seperti inhalable/thoracic particulate yang terutama mengedap disaluran pernafasan bagian bawah, yaitu dibawah pangkal tenggorokan (larynx ). Istilah lainnya yang juga digunakan adalah PM-10 (partikulat debu dengan ukuran diameter aerodinamik <10 mikron), yang mengacu pada unsur fisiologi maupun metode pengambilan sampel.

B. SUMBER DAN DISTRIBUSI
Secara alamiah partikulat debu dapat dihasilkan dari debu tanah kering yang terbawa oleh angin atau berasal dari muntahan letusan gunung berapi. Pembakaran yang tidak sempurna dari bahan bakar yang mengandung senyawa karbon akan murni atau bercampur dengan gas-gas organik seperti halnya penggunaan mesin disel yang tidak terpelihara dengan baik. Partikulat debu melayang (SPM) juga dihasilkan dari pembakaran batu bara yang tidak sempurna sehingga terbentuk aerosol kompleks dari butir-butiran tar. Dibandingkan dengan pembakaraan batu bara, pembakaran minyak dan gas pada umunya menghasilkan SPM lebih sedikit. Kepadatan kendaraan bermotor dapat menambah asap hitam pada total emisi partikulat debu. Demikian juga pembakaran sampah domestik dan sampah komersial bisa merupakan sumber SPM yang cukup penting. Berbagai proses industri seperti proses penggilingan dan penyemprotan, dapat menyebabkan abu berterbangan di udara, seperti yang juga dihasilkan oleh emisi kendaraan bermotor.

C. DAMPAK TERHADAP KESEHATAN
Inhalasi merupakan satu-satunya rute pajanan yang menjadi perhatian dalam hubungannya dengan dampak terhadap kesehatan. Walau demikian ada juga beberapa senjawa lain yang melekat bergabung pada partikulat, seperti timah hitam (Pb) dan senyawa beracun lainnya, yang dapat memajan tubuh melalui rute lain. Pengaruh partikulat debu bentuk padat maupun cair yang berada di udara sangat tergantung kepada ukurannya. Ukuran partikulat debu bentuk padat maupun cair yang berada diudara sangat tergantung kepada ukurannya. Ukuran partikulat debu yang membahayakan kesehatan umumnya berkisar antara 0,1 mikron sampai dengan 10 mikron. Pada umunya ukuran partikulat debu sekitar 5 mikron merupakan partikulat udara yang dapat langsung masuk kedalam paru-paru dan mengendap di alveoli. Keadaan ini bukan berarti bahwa ukuran partikulat yang lebih besar dari 5 mikron tidak berbahaya, karena partikulat yang lebih besar dapat mengganggu saluran pernafasan bagian atas dan menyebabkan iritasi. Keadaan ini akan lebih bertambah parah apabila terjadi reaksi sinergistik dengan gas SO2 yang terdapat di udara juga.
Selain itu partikulat debu yang melayang dan berterbangan dibawa angin akan menyebabkan iritasi pada mata dan dapat menghalangi daya tembus pandang mata (Visibility) Adanya ceceran logam beracun yang terdapat dalam partikulat debu di udara merupakan bahaya yang terbesar bagi kesehatan. Pada umumnya udara yang tercemar hanya mengandung logam berbahaya sekitar 0,01% sampai 3% dari seluruh partikulat debu di udara Akan tetapi logam tersebut dapat bersifat akumulatif dan kemungkinan dapat terjadi reaksi sinergistik pada jaringan tubuh, Selain itu diketahui pula bahwa logam yang terkandung di udara yang dihirup mempunyai pengaruh yang lebih besar dibandingkan dengan dosis sama yang besaral dari makanan atau air minum. Oleh karena itu kadar logam di udara yang terikat pada partikulat patut mendapat perhatian.

7. TIMAH HITAM
A. SIFAT FISIK DAN KIMIA
Timah hitam ( Pb ) merupakan logam lunak yang berwarna kebiru-biruan atau abu-abu keperakan dengan titik leleh pada 327,5°C dan titik didih 1.740°C pada tekanan atmosfer. Senyawa Pb-organik seperti Pb-tetraetil dan Pb-tetrametil merupakan senyawa yang penting karena banyak digunakan sebagai zat aditif pada bahan bakar bensin dalam upaya meningkatkan angka oktan secara ekonomi. PB-tetraetil dan Pb tetrametil berbentuk larutan dengan titik didih masing-masing 110°C dan 200°C.
Karena daya penguapan kedua senyawa tersebut lebih rendah dibandingkan dengan daya penguapan unsur-unsur lain dalam bensin, maka penguapan bensin akan cenderung memekatkan kadar P-tetraetil dan Pb-tetrametil. Kedua senyawa ini akan terdekomposisi pada titik didihnya dengan adanya sinar matahari dan senyawa kimia lain diudara seperti senyawa halogen asam atau oksidator.

B. SUMBER DAN DISTRIBUSI
Pembakaran Pb-alkil sebagai zat aditif pada bahan bakar kendaraan bermotor merupakan bagian terbesar dari seluruh emisi Pb ke atmosfer berdasarkan estimasi skitar 80–90% Pb di udara ambien berasal dari pembakaran bensin tidak sama antara satu tempat dengan tempat lain karena tergantung pada kepadatan kendaraan bermotor dan efisiensi upaya untuk mereduksi kandungan pb pada bensin.
Penambangan dan peleburan batuan Pb di beberapa wilayah sering menimbulkan masalah pencemaran Tingkat kontaminasi Pb di udara dan air sekitar wilayah tersebut tergantung pada jumlah Pb yang diemisikan tinggi cerobong pembakaran limbah tpopgrafi dan kondisi lokal lainnya. Peleburan Pb sekunder, penyulingan dan industri senyawa dan barang-barang yang mengandung Pb, dan insinerator juga dapat menambah emisi Pb ke lingkungan.
Karena batubara seperti juga mineral lainnya (batuan dan sedimen) pada umumnya mengandung Pb kadar rendah, maka kegiatan berbagai industri yang terutama menghasilkan besi dan baja peleburan tembaga dan pembakaran batubara, harus dipandang sebagai sumber yang dapat menambah emisi Pb ke udara. Penggunaan pipa air yang mengandung Pb dirumah tangga terutama pada daerah yang kesadahan airnya rendah (lunak) dapat menjadi sumber pemajanan Pb pada manusia. Demikian juga didaerah dengan banyak rumah tua yang masih menggunakan cat yang mengandung Pb dapat menjadi sumber pemajanan Pb.

C. DAMPAK TERHADAP KESEHATAN
Pemajanan Pb dari industri telah banyak tercatat tetapi kemaknaan pemajanan di masyarakatvluas masih kontroversi, Kadar Pb di alam sangat bervariasi tetapi kandungan dalam tubuh manusia berkisar antara 100–400 mg. Sumber masukan Pb adalah makanan terutama bagi mereka yang tidak bekerja atau kontak dengan Pb Diperkirakan rata-rata masukkan Pb melalui makanan adalah 300 ug per hari dengan kisaran antara 100–500 mg perhari. Rata-rata masukkan melalui air minum adalah 20 mg dengan kisaran antara 10–100 mg. Hanya sebagian asupan (intake) yang diabsorpsi melalui pencernaan. Pada manusia dewasa absorpsi untuk jangka panjang berkisar antara 5–10% bila asupan tidak berlebihan kandungan Pb dalam tinja dapat untuk memperkirakan asupan harian karena 90% Pb dikeluarkan dengan cara ini.
Kontribusi Pb di udara terhadap absorpsi oleh tubuh lebih sulit diperkirakan. Distribusi ukuran partikel dan kelarutan pb dalam partikel juga harus dipertimbangkan biasanya kadar pb di udara sekitar 2 mg/m3 dan dengan asumsi 30% mengendap disaluran pernapasan dan absorpsi sekitar 14 mg/per hari. Mungkin perhitungan ini bisa dianggap terlalu besar dan partikel Pb yang dikeluarkan dari kendaraan bermotor ternyata bergabung dengan filamen karbon dan lebih kecil dari yang diperkirakan walaupun agregat ini sangat kecil (0,1 mm) jumlah yang tertahan di alveoli mungkin kurang dari 10%. Uji kelarutan menunjukkan bahwa Pb berada dalam bentuk yang sukar larut.
Hampir semua organ tubuh mengandung Pb dan kira-kira 90% dijumpai di tulang, kandungan dalam darah kurang dari 1% kandungan dalam darah dipengaruhi oleh asupan yang baru (dalam 24 Jam terakhir) dan Oleh pelepan dari sistem rangka. Manusia dengan pemajanan rendah mengandung 10–30 mg Pb/100 g darah Manusia yang mendapat pemajanan kadar tinggi mengandung lebih dari 100 mg/100 g darah kandungan dalam darah sekitar 40 mg Pb/100g dianggap terpajan berat atau mengabsorpsi Pb cukup tinggi walau tidak terdeteksi tanda-tanda keluhan keracunan.
Terdapat perbedaan tingkat kadar Pb di perkantoran dan pedesaan wanita cenderung mengandung Pb lebih rendah disbanding pria, dan pada perokok lebih tinggi dibandingkan bukan perokok. Gejala klinis keracunan timah hitam pada individu dewasa tidak akan timbul pada kadar Pb yang terkandung dalam darah dibawah 80 mg Pb/100 g darah namun hambatan aktivitas enzim untuk sintesa haemoglobin sudah terjadi pada kandungan Pb normal (30–40 mg).
Timah Hitam berakumulasi di rambut sehingga dapat dipakai sebagai indikator untuk memperkirakan tingkat pemajanan atau kandungan Pb dalam tubuh Anak-anak merupakan kelompok risika tinggi Menelan langsung bekas cat yang mengandung Pb merupakan sumber pemajanan, selain emisi industri dan debu jalan yang berasal dari lalu lintas yang padat mungkin keracunan Pb ada juga hubungannya dengan keterbelakangan mental tetapi belum ada bukti yang jelas.
Senyawa Pb organik bersifat neurotoksik dan tidak menyebabkan anemia Hampir semua Pb–tetraetil diubah menjadi Pb Organik dalam proses pembakaran bahan bakar bermotor dan dilepaskan ke udara. Pengaruh Pb dalam tubuh belum diketahui benar tetapi perlu waspada terhadap pemajanan jangka panjang Timah Hitam dalam tulang tidak beracun tetapi pada kondisi tertentu bisa dilepaskan karena infeksi atau proses biokimia dan memberikan gejala keluhan garam Pb tidak bersifat karsiogenik terhadap manusia.
Gangguan kesehatan adalah akibat bereaksinya Pb dengan gugusan sulfhidril dari protein yang menyebabkan pengendapan protein dan menghambat pembuatan haemoglobin, Gejala keracunan akut didapati bila tertelan dalam jumlah besar yang dapat menimbulkan sakit perut muntah atau diare akut. Gejala keracunan kronis bisa menyebabkan hilang nafsu makan, konstipasi lelah sakit kepala, anemia, kelumpuhan anggota badan, Kejang dan gangguan penglihatan.

1.3   PENGENDALIAN PENCEMARAN UDARA
Pengendalian pencemaran akan membawa dampak positif bagi lingkungan karena hal tersebut akan menyebabkan kesehatan masyarakat yang lebih baik, kenyamanan hidup lingkungan sekitar yang lebih tinggi, resiko yang lebih rendah, kerusakan materi yang rendah, dan yang paling penting ialah kerusakan lingkungan yang rendah. Faktor utama yang harus diperhatikan dalam pengendalian pencemaran ialah karakteristik dari pencemar dan hal tersebut bergantung pada jenis dan konsentrasi senyawa yang dibebaskan ke lingkungan, kondisi geografik sumber pencemar, dan kondisi meteorologis lingkungan. Pengendalian pencemaran udara dapat dilakukan dengan dua cara yaitu pengendalian pada sumber pencemar dan pengenceran limbah gas. Pengendalian pada sumber pencemar merupakan metode yang lebih efektif karena hal tersebut dapat mengurangi keseluruhan limbah gas yang akan diproses dan yang pada akhirnya dibuang ke lingkungan. Di dalam sebuah pabrik kimia, pengendalian pencemaran udara terdiri dari dua bagian yaitu penanggulangan emisi debu dan penanggulangan emisi senyawa pencemar.
Alat-alat pemisah debu bertujuan untuk memisahkan debu dari alirah gas buang. Debu dapat ditemui dalam berbagai ukuran, bentuk, komposisi kimia, densitas, daya kohesi, dan sifat higroskopik yang berbeda. Maka dari itu, pemilihan alat pemisah debu yang tepat berkaitan dengan tujuan akhir pengolahan dan juga aspek ekonomis. Secara umum alat pemisah debu dapat diklasifikasikan menurut prinsip kerjanya :
   ·            Pemisah Brown Alat pemisah debu yang bekerja dengan prinsip ini menerapkan prinsip gerak partikel menurut Brown. Alat ini dapat memisahkan debu dengan rentang ukuran 0,01 0,05 mikron. Alat yang dipatenkan dibentuk oleh susunan filamen gelas denga jarak antar filament yang lebih kecil dari lintasan bebas rata-rata partikel.
   ·            Penapisan Deretan penapis atau filter bag akan dapat menghilangkan debu hingga 0,1 mikron. Susunan penapis ini dapat digunakan untuk gas buang yang mengandung minyak atau debu higroskopik.
   ·            Pengendap elektrostatik/ Electrostatic Precipitator Alat ini mengalirkan tegangan yang tinggi dan dikenakan pada aliran gas yang berkecepatan rendah. Debu yang telah menempel dapat dihilangkan secara beraturan dengan cara getaran. Keuntungan yang diperoleh dari penggunaan pengendap elektrostatik ini ialah didapatkannya debu yang kering dengan ukuran rentang 0,2 0,5 mikron. Secara teoritik seharusnya partikel yang terkumpulkan tidak memiliki batas minimum. Gambar 12 adalah contoh gambar alat ini.
   ·            Pengumpul sentrifugal Pemisahan debu dari aliran gas didasarkan pada gaya sentrifugal yang dibangkitkan oleh bentuk saluran masuk alat. Gaya ini melemparkan partikel ke dinding dan gas berputar (vortex) sehingga debu akan menempel di dinding serta terkumpul pada dasar alat. Alat yang menggunakan prinsip ini digunakan untuk pemisahan partikel dengan rentang ukuran diameter hingga 10 mikron lebih.
   ·            Pemisah inersia Pemisah ini bekerja atas gaya inersia yang dimiliki oleh partikel dalam aliran gas. Pemisah ini menggunakan susunan penyekat sehingga partikel akan bertumbukan dengan penyekat dan akan dipisahkan dari aliran fasa gas. Alat yang bekerja berdasarkan prinsip inersia ini bekerja dengan baik untuk partikel yang berukuran hingga 5 mikron.
Gambar 12. Electrostatic Precipitator
   ·            Pengendapan dengan gravitasi Alat yang bekerja dengan prinsip ini memanfaatkan perbedaan gaya gravitasi dan kecepatan yang dialami oleh partikel. Alat ini akan bekerja dengan baik untuk partikel dengan ukuran yang lebih besar dari 40 mikron dan tidak digunakan sebagi pemisah debu tingkat akhir. Di industri, terdapat juga beberapa alat yang dapat memisahkan debu dan gas secara bersamaan (simultan). Alat-alat tersebut memanfaatkan sifat-sifat fisik debu sekaligus sifat gas yang dapat terlarut dalam cairan. Beberapa metoda umum yang dapat digunakan untuk pemisahan secara simultan ialah: Irrigated Cyclone Scrubber
   ·            Menara percik Prinsip kerja menara percik ialah mengkontakkan aliran gas yang berkecepatan rendah dengan aliran air yang bertekanan tinggi dalam bentuk butiran. Alat ini merupakan alat yang relatif sederhana dengan kemampuan penghilangan sedang (moderate). Menara percik mampu mengurangi kandungan debu dengan rentang ukuran diameter 10-20 mikron dan gas yang larut dalam air.
   ·            Siklon basah Modifikasi dari siklon ini dapat menangani gas yang berputar lewat percikan air. Butiran air yang mendandung partikel dan gas yang terlarut akan dipisahkan dengan aliran gas utama atas dasar gaya sentrifugal. Slurry dikumpulkan di bagian bawah siklon. Siklon jenis ini lebih baik daripada menara percik. Rentang ukuran debu yang dapat dipisahkan ialah antara 3 5 mikron.
   ·            Pemisah venturi Metode pemisahan venturi didasarkan atas kecepatan gas yang tinggi pada bagian yang disempitkan dan kemudan gas akan bersentuhan dengan butir air yang dimasukkan di daerah sempit tersebut. Alat ini dapat memisahakan partikel hingga ukuran 0,1 mikron dan gas yang larut di dalam air.
   ·            Tumbukan orifice plate Alat ini disusun oleh piringan yang berlubang dan gas yang lewat orifis ini membentur lapisan air hingga membentuk percikan air. Percikan ini akan bertumbukkan dengan penyekat dan air akan menyerap gas serta mengikat debu. Ukuran partikel paling kecil yang dapat diserap ialah 1 mikron.
   ·            Menara dengan packing Prinsip penyerapan gas dilakukan dengan cara mengkontakkan cairan dan gas di antara packing. Aliran gas dan cairan dapat mengalir secara co-current, counter-current, ataupun cross-current. Ukuran debu yang dapat diserap ialah debu yang berdiameter lebih dari 10 mikron.
   ·            Pencuci dengan pengintian Prinsip yang diterapkan adalah pertumbuhan inti dengan kondensasi dan partikel yang dapat ditangani ialah partikel yang berdiameter hingga 0,01 mikron serta dikumpulkan pada permnukaan filamen.
   ·            Pembentur turbulen Pembentur turben pada dasarnya ialah penyerapan partikel dengan cara mengalirkan aliran gas lewat cairan yang berisi bola-bola pejal. Partikel dapat dipisahan dari aliran gas karena bertumbukkan dengan bola-bola tersebut. Efisiensi penyerapan gas bergantung pada jumlah tahap yang digunakan. Pemilihan Teknologi Teknologi pengendalian harus dikaji secara seksama agar penggunaan alat tidak berlebihan dan kinerja yang diajukan oleh pembuat alat dapat dicapai dan memenuhi persyaratan perlindungan lingkungan.

Faktor-faktor yang mempengaruhi pemilihan teknologi pengendalian dan rancangan sistemnya ialah :
1.       watak gas buang atau efluen
2.       tingkat pengurangan limbah yang dibutuhkan
3.       teknologi komponen alat pengendalian pencemaran
4.       kemungkinan perolehan senyawa pencemar yang bernilai ekonomi Industri-industri di Indonesia terutama industri milik negara telah menerapakan sistem pengendalian pencemaran udara dan sistem ini terutama dikaitkan dengan proses produksi serta penanggulangan pencemaran debu.

EVALUASI
1.       Bagaimana hubungan antara peristiwa pencemaran udara dan isu global warming ? Jelaskan !
2.       Jelaskan bagaimana pencemaran udara dapat mengakibatkan peristiwa hujan asam ?
3.       Apakah dampak yang ditimbulkan dari peristiwa hujan asam ?

Tidak ada komentar:

Posting Komentar